17 research outputs found

    Exploiting linkage information in real-valued optimization with the real-valued gene-pool optimal mixing evolutionary algorithm

    Get PDF
    The recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) has been shown to be among the state-of-the-art for solving discrete optimization problems. Key to the success of GOMEA is its ability to efficiently exploit the linkage structure of a problem. Here, we introduce the Real-Valued GOMEA (RV-GOMEA), which incorporates several aspects of the real-valued EDA known as AMaLGaM into GOMEA in order to make GOMEA well-suited for real-valued optimization. The key strength of GOMEA to competently exploit linkage structure is effectively preserved in RV-GOMEA, enabling excellent performance on problems that exhibit a linkage structure that is to some degree decomposable. Moreover, the main variation operator of GOMEA enables substantial improvements in performance if the problem allows for partial evaluations, which may be very well possible in many real-world applications. Comparisons of performance with state-of-the-art algorithms such as CMA-ES and AMaLGaM on a set of well-known benchmark problems show that RV-GOMEA achieves comparable, excellent scalability in case of black-box optimization. Moreover, RV-GOMEA achieves unprecedented scalability on problems that allow for partial evaluations, reaching near-optimal solutions for problems with up to millions of real-valued variables within one hour on a normal desktop computer

    Large-scale parallelization of partial evaluations in evolutionary algorithms for real-world problems

    Get PDF
    The importance and potential of Gray-Box Optimization (GBO) with evolutionary algorithms is becoming increasingly clear lately, both for benchmark and real-world problems. We consider the GBO setting where partial evaluations are possible, meaning that sub-functions of the evaluation function are known and can be exploited to improve optimization efficiency. In this paper, we show that the efficiency of GBO can be greatly improved through large-scale parallelism, exploiting the fact that each evaluation function requires the calculation of a number of independent sub-functions. This is especially interesting for real-world problems where often the majority of the computational effort is spent on the evaluation function. Moreover, we show how the best parallelization technique largely depends on factors including the number of sub-functions and their required computation time, revealing that for different parts of the optimization the best parallelization technique should be selected based on these factors. As an illustration, we show how large-scale parallelization can be applied to optimization of high-dose-rate brachytherapy treatment plans for prostate cancer. We find that use of a modern Graphics Processing Unit (GPU) was the most efficient parallelization technique in all realistic scenari

    On the feasibility of automatically selecting similar patients in highly individualized radiotherapy dose reconstruction for historic data of pediatric cancer survivors

    Get PDF
    Purpose: The aim of this study is to establish the first step toward a novel and highly individualized three-dimensional (3D) dose distribution reconstruction method, based on CT scans and organ delineations of recently treated patients. Specifically, the feasibility of automatically selecting the CT scan of a recently treated childhood cancer patient who is similar to a given historically treated child who suffered from Wilms' tumor is assessed.Methods: A cohort of 37 recently treated children between 2- and 6-yr old are considered. Five potential notions of ground-truth similarity are proposed, each focusing on different anatomical aspects. These notions are automatically computed from CT scans of the abdomen and 3D organ delineations (liver, spleen, spinal cord, external body contour). The first is based on deformable image registration, the second on the Dice similarity coefficient, the third on the Hausdorff distance, the fourth on pairwise organ distances, and the last is computed by means of the overlap volume histogram. The relationship between typically available features of historically treated patients and the proposed ground-truth notions of similarity is studied by adopting state-of-the-art machine learning techniques, including random forest. Also, the feasibility of automatically selecting the most similar patient is assessed by comparing ground-truth rankings of similarity with predicted rankings.Results: Similarities (mainly) based on the external abdomen shape and on the pairwise organ distances are highly correlated (Pearson rp ≥ 0.70) and are successfully modeled with random forests based on historically recorded features (pseudo-R2 ≥ 0.69). In contrast, similarities based on the shape of internal organs cannot be modeled. For the similarities that random forest can reliably model, an estimation of feature relevance indicates that abdominal diameters and weight are the most important. Experiments on automatically selecting similar patients lead to coarse, yet quite robust results: the most similar patient is retrieved only 22% of the times, however, the error in worst-case scenarios is limited, with the fourth most similar patient being retrieved.Conclusions: Results demonstrate that automatically selecting similar patients is feasible when focusing on the shape of the external abdomen and on the position of internal organs. Moreover, whereas the common practice in phantom-based dose reconstruction is to select a representative phantom using age, height, and weight as discriminant factors for any treatment scenario, our analysis on abdominal tumor treatment for children shows that the most relevant features are weight and the anterior-posterior and left-right abdominal diameters

    Diagnosis of plan execution and the executing agent

    No full text

    Multiagent planning: problem properties that matter

    No full text
    Many different problems are called distributed or multiagent planning problems. Existing approaches each deal with only a subset of these problems. Which properties are essential in determining a solution method for multiagent planning prob-lems? We argue that mainly the facts that communication is limited, agents have private goals, and the frequency of the dependencies between agents have a significant impact on the solution method

    Fuzzy Argumentation for Trust

    No full text

    Improving model-based Genetic Programming for Symbolic Regression of small expressions

    No full text
    The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a model-based EA framework that has been shown to perform well in several domains, including Genetic Programming (GP). Differently from traditional EAs where variation acts blindly, GOMEA learns a model of interdependencies within the genotype, that is, the linkage, to estimate what patterns to propagate. In this article, we study the role of Linkage Learning (LL) performed by GOMEA in Symbolic Regression (SR). We show that the non-uniformity in the distribution of the genotype in GP populations negatively biases LL, and propose a method to correct for this. We also propose approaches to improve LL when ephemeral random constants are used. Furthermore, we adapt a scheme of interleaving runs to alleviate the burden of tuning the population size, a crucial parameter for LL, to SR. We run experiments on 10 real-world datasets, enforcing a strict limitation on solution size, to enable interpretability. We find that the new LL method outperforms the standard one, and that GOMEA outperforms both traditional and semantic GP. We also find that the small solutions evolved by GOMEA are competitive with tuned decision trees, making GOMEA a promising new approach to SR
    corecore